Helping contaminants emerge: The application of high-resolution mass spectrometry to non-targeted analysis of organic pollutants

P. Lee Ferguson, Gordon J. Getzinger, Bernadette Vogler, and Heather M. Stapleton

Nicholas School of the Environment, Duke University, Durham, NC

lee.ferguson@duke.edu

What are the next emerging contaminants and how can we find them in the environment?

LC-HRMS: An emerging technique for "helping contaminants emerge"

LC-MS strategies for characterization of organic contaminants									
Screening technique:	Targeted	Suspect	Non-target						
Question:	Are compounds x, y, & z present in this sample?	Which compounds of a defined list are present in this sample?	Which compounds are present in this sample?						
Compound Types:	Known-knowns	Known-unknowns	Known-unknowns & unknown-unknowns						

Wastewater is a significant source of emerging contaminants to the aquatic environment

- Micropollutant fate in wastewater treatment is process-dependent
- Removal efficiencies may vary substantially depending on micropollutant structure
- Needed: methods for "holistic" assessment of micropollutant fate during wastewater treatment

OBJECTIVE:

Application of a non-targeted LC-HRMS method for fate-dependent analysis of micropollutants in wastewater and surface water

Study site and sampling

Sample Preparation and Instrumental Analysis

Sampling:

- Daily grab samples (Tue-Fri)
- Triplicate sampling on one day

Sample enrichment:

- 500 mL sample (primary effluent diluted 1:5 (v/v))
- Spiked with stable isotope labeled standards (19)
- Automated SPE, 500 mg Oasis HLB

UHPLC

- Dionex Ultimate 3000, 100x2.1 Thermo Hypersil Gold aQ
- H2O/ACN gradient, 95% to 1% H2O in 55 min, 0.5 mL min-1

High-resolution mass spectrometry

- Thermo LTQ Orbitrap Velos, ESI(+)
- Full-scan (m/z 100-2000), accurate mass, R=60k FWHM
- Top-4 data-dependent accurate mass MS², R=7500 FWHM

Why do we use HRMS for non-targeted analysis of pollutants?

Data analysis workflow

- Molecular feature detection
 - De-adduct, de-isotope
 - Feature = accurate neutral mass+ retention time
- 2. Molecular formula prediction
 - Monoisotopic mass decomposition
 - Isotope pattern filtering
 - Fragmentation tree annotation
- Postulate structure
 - PubChem formula query
- 4. Holistic structure scoring
 - Combinatorial fragment generator
 - Literature and patent data
 - Similarity searching

Isotope labeled standards reveal high reproducibility and minimal matrix effects across sample types

Differential analysis of non-target compounds in wastewater to reveal emerging contaminants

- Screening results were used to generate target lists for differential screening
- ID in screening = mass error <+/-2.5 ppm and Δ RT< 0.5min

Category	Blank	Upstream	Primary eff.	Secondary eff.	Final eff.	Downstream
Wastewater-derived, biodegradable	0	0	^	4	→	→
Wastewater-derived, physical removal	0	0	^	Ä	Ä	→
Wastewater-derived, recalcitrant	0	0	^	→	→	→
Transformation product, removed	0	0	0	^	Ψ	→
Transformation product, recalcitrant	0	0	0	^	→	→
Transformation product, produced in tertiary treatment	0	0	0	71	^	→
Non wastewater-derived	0	^	0	0	0	^
Ubiquitous	0	→	→	→	→	→
Laboratory contaminant	→	→	→	→	→	→

Fate-dependent feature prioritization

Data filtering

- Remove features corresponding to ethoxylated oligomers
- Filter based on MS² spectra
- Retain features with molecular formula assignment
- Prioritize based on differential category
- Focus on high quality mzCloud library matches

Results: Feature molecular weight distributions change during the wastewater treatment process

257.1777 Da feature follows a recalcitrant transformation product profile

Dextrorphan tentatively identified by library match and in silico fragments

A feature at 435.2244 Da is wastewater-derived and recalcitrant

Valsartan tentatively identified by library match and in silico fragments

Chemspider matches for C₂₄H₂₉N₅O₃

CSID	ΔMass [ppm]	# References	Structure	Name
54833	1.4	1050		Valsartan
4447678	1.4	34	H ₂ C CH ₃ H N N N N N N N N N N N N N N N N N N	N-pentanoyl-N-{[2'-(1H-tetrazol- 5-yl)bipheoyl-4-yl]methyl}-D- valine
5448	1.4	26		N-Pentanoyl-N-{[2'-{1H-tetrazol- 5-yl}-4-biphenylyl]methyl}valine
2414607	1.4	15	Q A A A A A A A A A A A A A A A A A A A	1,6,7-Trimethyl-3-(3- phenylpropyl)-8-(tetrahydro-2- furanylmethyl)-1H-imidazo[2,1- f]purine-2,4(3H,8H)-dione
2414601	1.4	13	Original Control of Co	3-(2,5-Dimethylbenzyl)-1,6,7- trimethyl-8-(tetrahydro-2- furanylmethyl)-1H-imidazo[2,1- f]purine-2,4(3H,8H)-dione

Valsartan is a highly prescribed angiotensin II receptor antagonist and has previously been shown to be recalcitrant to biodegradation in wastewater treatment.

Bergheim, M. et al. 2014. Environ. Chem., 11, 431-444

204.1512 Da feature increases after tertiary treatment (UV)

Without library matches, in silico fragmentation provides structural clues

Chemspider matches for C₁₄H₂₀O

CSID	ΔMass [ppm]	# References		Name	
199342	1.14		H ₃ C CH ₃	Protectol PP (Lilial)	MI:
110058	1.14	67	H ₄ C CH	p-Hexylacetophenone	<u>ha</u> nh
66895	1.14	52	H.C.	Octanophenone	
67442	1.14		H ₃ C CH ₃ CH ₃	1-(4-tert-Butyl-2,6- dimethylphenyl)ethanone	
4519770	1.14	27	СН	(2E)-2-Benzylidene-1- heptanol	

C8 oxo-alkylbenzenes have been reported as oxidation products of petroleum hydrocarbons in marine environments.

Results: Suspect compounds tentatively identified

- 78 compounds from six classes were tentatively identified in wastewater/surface water
- 20 of these were confirmed with standards (100% correct assignment)
- A further 1,101 features
 were annotated as
 polyethoxylated
 surfactants (comprising
 39% of features identified
 as wastewater-derived,
 biodegradable)
- The largest fraction of ID'd compounds was classified as recalcitrant transformation products.

Conclusions: Non-targeted analysis of micropollutants in wastewater

- LC-HRMS coupled with optimized non-targeted screening workflows provide essential tools for conducting "fatedirected analysis" of organic contaminants in the environment.
- Differential analysis coupled to suspect screening is a powerful approach for identifying treatment-specific profiles of microcpollutants during wastewater treatment
- Holistic analysis reveals that wastewater micropollutant burdens change both qualitatively and quantitatively during treatment
- Opportunities exist to utilize this approach to inform future wastewater treatment process design and optimization.

Semivolatile organic contaminants in the indoor environment: a challenging "exposome"

- Research on SVOCs has focused on occurrence and effects in the ambient environment
 there have been few comprehensive studies on human exposure indoors
- SVOCs escape from household products over time and may accumulate in the indoor environment
- They are applied to consumer products to enhance performance or durability such as:

Phthalates in personal care products

Flame retardants in furniture and electronics

Bisphenol A in waterbottles

Surfactants in cleaning agents

Antioxidants in food packaging

Why study SVOC's indoors?

- Some SVOC's are potential endocrine disrupters
 - Bisphenol A is a xenoestrogen
 - Flame retardants have been shown to act on the thyroid hormone receptor

Exposure through: inhalation, ingestion, dermal absorption,

Assess human exposure to SVOCs from the indoor environment through non-targeted analysis of paired house dust and hand wipes samples.

Analytical strategy for dust and handwipe samples

- Most indoor exposure analysis has applied gas chromatography mass spectrometry (focus on nonpolar organic contaminants)
- Liquid chromatography coupled with high resolution mass spectrometry can be used to characterize (semi)polar organic contaminants within indoor environments.
- Non-targeted data analytics allows de novo identificatio, prioritized by compounds with highest exposure potential.
- This approach complements more targeted, quantitative analysis of SVOCs by LC-MS/MS or GC-MS approaches.

- 10 x dust and handwipes
- + dust blanks and wipe blanks

Sample preparation

Extraction by sonication in Hexane/Dichloromethane 1:1;

Solvent exchange to 10 % Acetonitrile in H₂O by speedvac, sonication and centrifugation.

Liquid Chromatography

Reversed phase separation C18, From 10 % Acetonitrile to 99% in 60 min

Orbitrap Velos

ESI(+) and ESI (-)

Resolution: 60'000 @ m/z 400

Top 4 data dependent MSMS

CID with 35 normalized energy

Comprehensive 2D Liquid Chromatography

Size exclusion X reversed phase separation 90 min run divided into 2 min segments

Orbitrap Velos

ESI(+)

Resolution: 60'000 @ m/z 400

Comprehensive 2D UHPLC (LC x LC)

For effective separation:

- Separation mechanisms must be **orthogonal**.
- Example: Size and Hydrophobicity or Hydrophilic interaction and Hydrophobicity.
- While eluting from the first column requires strong retention on the second column

2D UHPLC-HRMS configuration

Data processing starts with Thermo Compound Discoverer 2.0 for peak consolidation/filtering

Comprehensive LC x LC-HRMS of dust reveals ethoxylated

There was no correlation between ethoxylated surfactant peak areas in paired dust/handwipe samples (decoupled sources?)

Nonionic surfactant ethoxymer distributions in paired dust/handwipe samples

Example: NPEO

Example: Alcohol Ethoxylate C14

Ethoxymer distribution varied from surfactant to surfactant and person to person – this suggests different sources of ethoxylated surfactants in some cases.

Subraction of surfactant features prioritizes monomeric compounds for identification

Workflow strategies for identifying compounds in dust/handwipes from LC-HRMS data

531.4063

Molecular formula generation: Vital first step toward structural ID

Ultra-high resolution allows molecular formula validation by isotope fine structure inspection

Identification of a New Source of Interference Leached from Polypropylene Tubes in Mass-Selective Analysis

Identifying features from an in-house curated suspect database (31,985 entries)

MetFusion for compound ID from HRMS² data

Generalized workflow strategies for identifying SVOC contaminants in paired dust/handwipes by LC-HRMS

Compounds identified in dust/handwipes

34 compounds

- 10 identified with Standard
- 24 tentatively identified

1.20E+06

Peak Area:

1.00E+03

6.00E+07

Compounds identified in dust/handwipes

34 compounds

- 10 identified with Standard
- 24 tentatively identified

1.20E+06

Peak Area:

1.00E+03

6.00E+07

	acetyl butyl citrate		10	10						
	benzyl butyl phthalate		9	10						Х
'es	caprolactam cyc	ic dimer	8	9						
additives	caprolactam By	product of polymerization	5	10						
adc		ed for food packaging	4	10						
Jer	caprolactam cyc	lic pentamer	1	10						
Polymer	caprolactam cyc	lic hexamer	0	6					Ш	
Pc	dilauryl sulfinyl-	R'-dipropionato	10	9						
	N,N-bis(2-hydr Leaching from plastics		10	10						
	oleamide		8	6						
	fipronil		6	9						Х
des	fipronil Sulfone		4	8						Х
Pesticides	imazalil		1	4						
Pes	imidacloprid		4	9						Х
	ketoconazol		1	1						
ırs	2 1,3-dilinolein Oxidation product of cooking		king	oil						
Others	alpha-tocopheryl nicotinate 2			5						\Box
0	piperine Comes from black pepper		10	10						

Conclusions: Exploring the indoor environment exposome using non-targeted analysis strategies

- (2D)LC-HRAM mass spectrometry is a powerful tool for analysis of SVOC compounds in dust and hand wipe samples.
- Non-targeted workflows allow a more holistic view of contaminant exposure in indoor environments relative to targeted analysis.
- 213 tentative and confirmed identifications were made from 567 filtered components in dust/wipes (37.5% of filtered features).
- The most dominant compounds in dust and handwipes were non ionic surfactants such as nonylphenol ethoxylates or alcohol ethoxylates.

Acknowledgement

Ferguson Lab Group Stapleton Lab Group

Thermo Fisher S C I E N T I F I C

Richard Jack and Dipankar Ghosh

Data analysis workflow

